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Abstract

Mistrust is a major barrier to implementing deep learning in healthcare settings. Entrustment

could be earned by conveying model certainty, or the probability that a given model output is

accurate, but the use of uncertainty estimation for deep learning entrustment is largely unex-

plored, and there is no consensus regarding optimal methods for quantifying uncertainty.

Our purpose is to critically evaluate methods for quantifying uncertainty in deep learning for

healthcare applications and propose a conceptual framework for specifying certainty of

deep learning predictions. We searched Embase, MEDLINE, and PubMed databases for

articles relevant to study objectives, complying with PRISMA guidelines, rated study quality

using validated tools, and extracted data according to modified CHARMS criteria. Among 30

included studies, 24 described medical imaging applications. All imaging model architec-

tures used convolutional neural networks or a variation thereof. The predominant method

for quantifying uncertainty was Monte Carlo dropout, producing predictions from multiple

networks for which different neurons have dropped out and measuring variance across the

distribution of resulting predictions. Conformal prediction offered similar strong performance

in estimating uncertainty, along with ease of interpretation and application not only to deep

learning but also to other machine learning approaches. Among the six articles describing

non-imaging applications, model architectures and uncertainty estimation methods were

heterogeneous, but predictive performance was generally strong, and uncertainty estima-

tion was effective in comparing modeling methods. Overall, the use of model learning curves

to quantify epistemic uncertainty (attributable to model parameters) was sparse. Heteroge-

neity in reporting methods precluded the performance of a meta-analysis. Uncertainty esti-

mation methods have the potential to identify rare but important misclassifications made by

deep learning models and compare modeling methods, which could build patient and
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clinician trust in deep learning applications in healthcare. Efficient maturation of this field will

require standardized guidelines for reporting performance and uncertainty metrics.

Author summary

Deep learning prediction models perform better than traditional prediction models for

several healthcare applications. For deep learning to achieve it’s greatest impact on health-

care delivery, patients and providers must trust deep learning models and their outputs.

This article describes the potential for deep learning to earn trust by conveying model cer-

tainty–the probability that a given model output is accurate. If a model could convey not

only it’s prediction but also it’s level of certainty that the prediction is correct, patients and

providers could make an informed decision to incorporate or ignore the prediction. The

use of uncertainty estimation for deep learning entrustment is largely unexplored, and

there is no consensus regarding optimal methods for quantifying uncertainty. Our pur-

pose is to critically evaluate methods for quantifying uncertainty in deep learning for

healthcare applications and propose a conceptual framework for specifying certainty of

deep learning predictions. We systematically reviewed published scientific literature and

summarized results from 30 studies, and found that uncertainty estimation methods have

the potential to identify rare but important misclassifications made by deep learning mod-

els and compare modeling methods, which could build patient and clinician trust in deep

learning applications in healthcare.

Introduction

Deep learning is increasingly important in healthcare. Deep learning prediction models that

leverage electronic health record data have outperformed other statistical and regression-

based methods [1,2]. Computer vision models have matched or outperformed physicians for

several common and essential clinical tasks, albeit in select circumstances [3,4]. These results

suggest a potential role for clinical implementation of deep learning applications in health

care.

Mistrust is a major barrier to clinical implementation of deep learning predictions [5,6].

Efforts to restore and build trust in machine learning have focused primarily on improving

model explainability and interpretability. These techniques build clinicians’ trust, especially

when model outputs and important features correlate with logic, scientific evidence, and

domain knowledge [7,8]. Another critically important step in building trust in deep learning is

to convey model uncertainty, or the probability that a given model output is inaccurate [8].

Deep learning models that typically perform well make rare but egregious errors [9]. If a

model could calculate the uncertainty in its predictions on a case-by-case basis, patients and

clinicians would be afforded opportunities to make safe, effective, data-driven decisions

regarding the utility of model outputs, and either ignore predictions with high uncertainty or

triage them for detailed, human review. Unfortunately, there is a paucity of literature describ-

ing effective mechanisms for calculating model uncertainty for healthcare applications, and no

consensus regarding best methods exists.

Our purpose is to critically evaluate methods for quantifying uncertainty in deep learning

for healthcare applications and propose a conceptual framework for optimizing certainty in

deep learning predictions. Herein, we perform a scoping review of salient literature, critically
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evaluate methods for quantifying uncertainty in deep learning, and use insights gained from

the review process to develop a conceptual framework.

Materials and methods

Article inclusion is illustrated in Fig 1, a PRISMA flow diagram. We searched Embase, MED-

LINE, and PubMed databases, chosen for their specificity to the healthcare domain, for articles

with “deep learning” and “confidence” or “uncertainty” in the title or abstract and for articles

with “deep learning” and “conformal prediction” in the title or abstract, identifying 37 unique

articles. Two investigators independently screened all article abstracts for relevance to review

objectives, removing three articles. Full texts of the remaining 34 articles were reviewed. Study

quality was independently rated by two investigators using quality assessment tools specific to

the design of the study in question (available at: https://www.nhlbi.nih.gov/health-topics/

study-quality-assessment-tools). Only studies describing healthcare applications that were

good or fair quality were included in the final analysis, which removed four articles, leaving 30

total articles in the final analysis. Data extraction was performed according to a modification

of CHARMS criteria, which included methods for measuring uncertainty in deep learning pre-

dictions [10]. The search was performed according to Preferred Reporting Items for System-

atic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines, as

listed in S1 PRISMA Checklist.

During screening, there were disagreements between the two investigators regarding the

exclusion of five articles; all disagreements were resolved by discussion of review objectives

without a third-party arbiter. Cohen’s kappa statistic summarizing interrater agreement

regarding article screening was 0.358 (observed agreement = 0.848, expected agree-

ment = 0.764), suggesting that screening agreement between reviewers was fair [11,12]. During

full text review, there was a disagreement between the two investigators regarding the exclu-

sion of one article, which was resolved by discussion of review objectives without a third-party

arbiter. Cohen’s kappa statistic summarizing interrater agreement regarding full text review

could not be calculated because both observed and expected agreement were 0.964, but this

high value suggests that agreement between reviewers was substantial.

Results

Included articles are summarized in Table 1. Notably, the use of uncertainty estimation in

these articles was rarely applied to building trust in deep learning among patients, caregivers,

and clinicians. Therefore, the presentation of results will focus primarily on the content of the

articles, and opportunities to use uncertainty-aware deep learning to build trust will be dis-

cussed further in the Discussion section as a novel application of established techniques.

Among 30 included studies, 24 described medical imaging applications and six described

non-imaging applications; these categories are evaluated and reported separately. First, impor-

tant themes from included articles are synthesized into a conceptual framework.

Conceptual framework for optimizing certainty in deep learning

predictions

Deep learning uncertainty can be classified as epistemic, (i.e., attributable to uncertainty

regarding model parameters or lack of knowledge), or aleatoric (i.e., attributable to stochastic

variability and noise in data). Epistemic and aleatoric uncertainty have overlapping etiologies,

as variability and noise in data can contribute to uncertainty regarding optimal model parame-

ters and knowledge regarding ground truth. In addition, epistemic and aleatoric uncertainty

may be amenable to similar mitigation strategies, as collecting and analyzing more data may
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allow for more effective identification and imputation of outlier and missing values, reducing

aleatoric uncertainty, and may also allow for more effective parameter searches. Beyond these

overlapping etiologies and mitigation strategies, epistemic and aleatoric uncertainty have some

unique and potentially important attributes. Epistemic uncertainty can be seen as a lack of

information about the best model and can be reduced by adding more training data [13].

Learning curves stratified by number of training samples offer an intuitive approach to visual-

izing epistemic uncertainty, where it becomes evident that using more data typically results

not only in more accurate models, but also in more stable loss when trained for the same num-

ber of epochs. In stochastic models, parameter estimates also become more stable with increas-

ing amounts of training data. In addition to increasing knowledge through larger sample sizes,

it may also be possible to reduce epistemic uncertainty by adding input features, especially

multi-modal features (e.g., using not only vital signs to predict hospital mortality, but also

using laboratory values, imaging data, and unstructured text data from notes written by clini-

cians), or modifying the algorithm to learn from additional nonlinear combinations of

Fig 1. PRISMA flow diagram for article inclusion.

https://doi.org/10.1371/journal.pdig.0000085.g001
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Table 1. Summary of included studies, classified as imaging or non-imaging applications.

Primary

author

Purpose Population or

sampling unit

Sample size Model

architecture

Best model

performance

Validation

method

Method for

quantifying

prediction

uncertainty

Quality

Rating

Medical imaging applications
Araújo (34) Grade diabetic

retinopathy

severity

Datasets of retinal

images

Approximately

93,000 images

Convolutional-

batch

normalization

blocks, max-

pooling layers

Quadratic-weighted

Cohen’s kappa 0.71–

0.84 for predictions vs.

ground truth

External Calculate Cohen’s

kappa statistics for

model predictions at

threshold levels of

uncertainty,

calculated by variance

in image-wise

retinopathy grade

probability

Good

Athanasiadis

(20)

Correlate

visual and

audio

emotional

expression

Audio-visual

emotion datasets

187 people, 7356

audio

recordings, 7442

videos, 96

images

Generative

Adversarial

Networks

Classification 52.52% in

one dataset and 47.11%

in the other

External Conformal prediction

to obtain error

calibration

Good

Ayhan (31) Diagnosing

diabetic

retinopathy

Fundus images 89,215 images Convolutional

neural network

AUC 0.959–0.982 External Calculate variance in

the form of entropy

as a distribution of

predicted

probabilities

Good

Cao (32) Classify breast

masses,

identify tumors

Breast ultrasound

images

107 patients with

13,382

ultrasound slices

Dense U-Net Accuracy 99.21% Internal Generate visual

epistemic uncertainty

maps for each image

Fair

Carneiro

(29)

Classifying

colorectal

polyps

Images of colorectal

polyps obtained by

colonoscopy

940 images from

287 patients

Residual and

densely

connected

convolutional

networks

Accuracy 0.76 External Classification entropy

or the predicted

variance produced by

Bayesian methods

Fair

Edupuganti

(35)

Quantify

uncertainty in

deep MRI

segmentation

Knee MRI images 19 patients with

320 2D image

slices per patient

Variational

autoencoders,

convolutional

neural networks

R2 = 0.97 for 2-fold

under sampling

External Generate a posterior

of the MRI image and

generate pixel

variance maps using

Monte-Carlo

sampling

Good

Graham (21) Label regions

and sub-

regions of the

brain

Brain MRI images 593 scans 3D UNet Dice score 0.845 for all

regions in uncertainty-

aware hierarchical

model

External Cross-entropy

uncertainty measured

at each progressively

smaller sub-region of

the brain

Good

Herzog (15) Diagnose

ischemic

stroke

Brain MRI images 511 patients with

average 30

images per

patient

Bayesian

convolutional

neural network

Accuracy 95.9%, was

2% better than model

without uncertainty

measurements

Internal Variance, variation

ratio, and predictive

entropy of a

distribution of

Bayesian probabilities

Good

Hu (30) Diagnose a

rare lymphoma

Positron emission

tomography and

computed

tomography scan

images

83 patients Convolutional

neural networks,

coarse-to-fine

segmentation

Sensitivity 74.7% Internal Zone-based

uncertainty estimates

based on Monte

Carlo dropout

technique comparing

the lesion and the

background

Good

Ktena (22) Evaluate

similarity

between

functional

brain networks

Brain functional

MRI images

871 subjects Convolutional

neural networks

Overall classification

improvement with

proposed metric 11.9%

and AUC 0.58

External Calculate similarity

between irregular

graphs rather than

calculating

uncertainty directly

Good

(Continued)
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Table 1. (Continued)

Primary

author

Purpose Population or

sampling unit

Sample size Model

architecture

Best model

performance

Validation

method

Method for

quantifying

prediction

uncertainty

Quality

Rating

Lee (43) Quantify

uncertainty in

brain

metabolite

identification

MRI, proton

magnetic resonance

spectroscopy

15 rats Convolutional

neural networks

Measurement

uncertainty for five

major metabolites was

less than 10%

Internal Calculate Cramer-

Rao-lower-bounds

statistics to estimate

the reliability of

fitting

Fair

Leibig (44) Diagnose

diabetic

retinopathy

Fundus images 89,902 images Convolutional

neural networks

>85% sensitivity and

80% sensitivity when

referring 20% of the

most uncertain

decisions for

further inspection

External Draw Monte Carlo

samples from the

approximate

predictive posterior,

use its standard

deviation to represent

uncertainty

Good

McKinley

(45)

Detect multiple

sclerosis lesion

changes

MRI images Training: 4–5

sets of 176

images for 26

patients, testing:

77 image sets

Convolutional

neural networks

Accuracies of 75% and

85% in separating stable

and progressive time-

points

External Use best-practice

standards to annotate

lesions, predict the

probability that a

convolutional neural

network will assign a

different label than

assigned a ground

truth

Good

Nair (36) Detect multiple

sclerosis

lesions

MRIs from patients

with relapsing-

remitting multiple

sclerosis

1064 patients,

annual MRIs

during a

24-month

period

Convolutional

neural network

Overall lesion-level true

positive rate of 0.8 at 0.2

false detection rate

External Approximate

probability

distributions with

Monte Carlo dropout

and measure their

variance, predictive

entropy, and mutual

information

Good

Natekar (37) Classify brain

tumors

Brain MRI images Training: 285

cases, testing: 48

volumes

Convolutional

neural networks

Whole tumor Dice

coefficient 0.830

External The mean of the

variance in a

predicted posterior

distribution

generated by running

a model for 100

epochs for each

image

Fair

Qin (16) Estimate brain

and

cerebrospinal

fluid

intracellular

volume

Brain diffusion MRI

scans

Approximately

1,000,000 images

(not specified

fully)

Convolutional

neural network

All correlations

between estimation

uncertainty and error

were significant

(p<0.001)

External Train an ensemble of

deep networks,

measure variance in

their fused results

Good

Roy (46) Identify brain

structures

Brain MRIs Four datasets

with MRIs from

30, 29, 13, and

18 subjects

Convolutional

neural network

Dice = 0.88, 0.83, 0.81,

0.81

External Samples are passed

through the neural

network serially,

some weights

dropped each time,

derive voxel-wise and

structure-wise

uncertainty from

variance across runs

Good

Sedghi (23) Model

agreement for

brain image

classifications

Brain MRIs 115 subjects Convolutional

neural network

Intra-subject dice for

gray matter, white

matter, cereprospinal

fluid = 0.70, 0.77, 0.62

External Calculate variance in

displacements for

different image

classifications

Good

(Continued)
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Table 1. (Continued)

Primary

author

Purpose Population or

sampling unit

Sample size Model

architecture

Best model

performance

Validation

method

Method for

quantifying

prediction

uncertainty

Quality

Rating

Seebock (38) Detect

anomalies in

retinal optical

coherence

tomography

images

Optical coherence

tomography B-scans

226, 33, 31 Bayesian U-Net,

convolutional

neural network-

based

Precision = 0.748,

recall = 0.844,

Dice = 0.789

External Testing samples are

passed through the

neural network

several times, some

weights are dropped

each time,

uncertainty is derived

from variance across

runs

Good

Tanno (17) Differentiate

among healthy

brain, glioma,

and multiple

sclerosis

Diffusion tensor

images or mean

apparent

propagator-MRI

Training: 16

subjects,

validation:

variable, overall

28 subjects

Convolutional

neural network

Uncertainty-based

classification correctly

identified 96% of all

high-risk (uncertain)

predictions

External Integrate intrinsic

uncertainty with a

heteroscedastic noise

model and parameter

uncertainty with

Bayesian inference

Good

Valiuddin

(18)

Density

modeling of

medical images

Thoracic computed

tomography and

endoscopic polyp

images

1,108 thoracic

computed

tomography

scans, 1,000

polyp images

Probabilistic

U-Net

Increased predictive

performance (GED and

IoU) of up to 14% with

an approach that

models uncertainty

External Learn aleatoric

uncertainty as a

distribution of

possible annotations

using a probabilistic

segmentation model

Wang (33) Classify

diabetic

macular edema

Optical cohere

tomography images

5,028 images Convolutional

and recurrent

neural networks

Accuracy 0.951,

F1-score 0.935–0.939,

AUC 0.986–0.990

External Mean and standard

deviation of

probabilistic

predictions yielded

by ensemble of

models

Good

Wickstrøm

(47)

Classify polyps

seen on

colonoscopy

Images obtained

from colonoscopies

912 images Fully

convolutional

network

IoU

background = 0.946,

IoU polyp = 0.587,

mean IoU = 0.767,

global accuracy = 0.949

Internal Monte Carlo dropout

to approximate

Bayesian posterior of

weights, Monte

Carlo-guided

backpropagation,

standard deviation of

pixels

Good

Wieslander

(19)

Investigate

drug

distribution on

lung

microscopy

images

Rat lungs after

treatment with

different doses and

routes of a

medication

1,105 images Convolutional

neural network

Precision = 0.89,

recall = 0.87, F1 = 0.87;

conformal prediction

R2 = 0.99 for actual vs.

observed error

Internal Conformal prediction

using largest p-value

minus second largest

p-value

Good

Non-imaging applications
Cortes-

Ciriano (24)

Drug discovery Potency of a

substance in

inhibiting a

biochemical or

biological function

24 protein drug

targets, 203–

5,207 bioactivity

data points per

protein

Ensembles of

100 deep neural

networks

Strong correlation

between confidence

levels and percentage of

confidence intervals

encompassing true

bioactivity (R2 > 0.99,

p<0.001)

External Ensemble deep neural

networks by

recording network

parameters

throughout local

minima during single

network

optimization,

calculate variability

and validation

residuals across

snapshots

Good

(Continued)
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variables. Once an epistemic uncertainty limit has been reached, quantifying the remaining

aleatoric uncertainty in predictions could augment clinical application by allowing patients

and providers to understand whether predictions have suitable accuracy and certainty for

incorporation in shared decision-making, or are too severely compromised by aleatoric uncer-

tainty to be useful, regardless of overall model accuracy [13]. These concepts are illustrated in

Fig 2. This explanation considers transforming a given model into a stochastic ensemble

through Bernoulli sampling of weights at model test time, giving rise to a measure of epistemic

uncertainty for each sample.

Medical imaging applications

Among the 24 studies describing medical imaging applications, 12 of those 24 (50%) used

magnetic resonance imaging (MRI) features for model training and testing; 11 of those 12

(92%) of which involved the brain or central nervous system. The next most common sources

of model features were retinal or fundus images (5 of 24, 21%) and endoscopic images of colo-

rectal polyps (3 of 24, 13%). The remaining studies used computed tomography images, breast

Table 1. (Continued)

Primary

author

Purpose Population or

sampling unit

Sample size Model

architecture

Best model

performance

Validation

method

Method for

quantifying

prediction

uncertainty

Quality

Rating

Cortes-

Ciriano (27)

Drug discovery Potency of a

substance in

inhibiting a

biochemical or

biological function

24 protein drug

targets, 479–

5,207 bioactivity

data points per

protein

Deep neural

networks and

random forest

Strong correlation

between confidence

levels and error rates

(R2 > 0.99, p<0.001)

External Conformal prediction

to compute

prediction errors on

ensembles of

predictions generated

by dropout

Good

Scalia (25) Predict

molecular

properties

Molecular graphs 4 datasets:

130828, 103657,

11908, and 4200

graphs

Graph

convolutional

neural networks

Test set errors for 4

datasets: 0.74, 0.32,

1.33, 0.481

External Monte Carlo

dropout, deep

ensembles, and

bootstrapping with

comparison of these

three methods

Good

Sieradzki

(48)

Compound

bioactivity

prediction

Bit strings

representing

compound

structures

Several sample

sizes, largest:

approximately

4,000

Multi-layer

perceptron

Models incorporating

uncertainty information

gained 0.004–0.007

precision

External Pass test samples

through the neural

network serially,

some weights

dropped each time,

uncertainty derived

from variance in

dropout

Good

Teng (28) Predict

Alzheimer’s

and

Parkinson’s

disease

progression

Clinical, imaging,

genetic, and

biochemical markers

of

neurodegenerative

disease

Alzheimer’s:

1,574 patients,

Parkinson’s:

1,093 patients

Deep generative

model with

recurrent neural

networks

Alzheimer’s:

accuracy = 0.916,

AUC = 0.981,

F1 = 0.916; Parkinson’s:

accuracy = 0.797,

AUC = 0.939,

F1 = 0.797

Internal Ensemble of possible

patient forecasts

using a generative

network

Good

Zhang (26) Predict toxicity

for chemical

compounds

Toxicities of

chemical

compounds on

nuclear receptors

and stress response-

related targets

Active class:

7039; inactive

class: 89,922

deep neural

networks,

random forest,

light gradient

boosting

machine

Average AUC = 0.734;

single-label predictions

generated for about

90% of all instances

with overall confidence

80% or greater

External Conformal prediction

using user-defined

significance levels

Good

AUC: area under the receiver operating characteristic curve, GED: generalized energy distance, IoU: intersection over union, MRI: magnetic resonance imaging.

https://doi.org/10.1371/journal.pdig.0000085.t001
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ultrasound images, lung microscopy images, or facial expressions. All model architectures

included convolutional neural networks or a variation thereof (e.g., U-Net).

The predominant method for quantifying uncertainty in model predictions was Monte

Carlo dropout, as originally described by Gal and Ghahramani as a Bayesian approximation of

probabilistic Gaussian processes [14]. Briefly, during testing, multiple predictions are gener-

ated from a given network for which different neurons have dropped out. The neuron dropout

rate is calibrated during model development according to training data sparsity and model

complexity. Each forward pass uses a different set of neurons, so the outcome is an ensemble

of different network architectures that can generate a posterior distribution for which high var-

iance suggests high uncertainty and low variance suggests low uncertainty. Studies assessing

the efficacy of uncertainty measurements provided reasonable evidence that uncertainty esti-

mations were useful. In applying a Bayesian convolutional neural network to diagnose ische-

mic stroke using brain MRI images, Herzog et al [15] found that uncertainty measurements

improved model accuracy by approximately 2%. In applying a convolutional neural network

to estimate brain and cerebrospinal fluid intracellular volume, Qin et al [16] reported highly

significant correlations (all p<0.001) between uncertainty estimations and observed error

based on ground truth values. Finally, in applying a convolutional neural network for differen-

tiating among glioma, multiple sclerosis, and healthy brain, Tanno et al [17] found that uncer-

tainty-based classification correctly identified 96% of all predictions that had high-risk for

error; this error was likely attributable to aleatoric uncertainty from noise and variability in

data. Valiuddi et al [18] used Monte Carlo simulations in depicting the performance of a prob-

abilistic U-Net performing density modeling of thoracic computed tomography and

Fig 2. A conceptual framework for optimizing certainty in deep learning predictions by quantifying and

minimizing aleatoric and epistemic uncertainty.

https://doi.org/10.1371/journal.pdig.0000085.g002
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endoscopic polyp images, learning aleatoric uncertainty as a distribution of possible annota-

tions using a probabilistic segmentation model. This approach was effective in increasing pre-

dictive performance, measured by generalized energy distance and intersection over union, by

up to 14%. Collectively, these findings suggest Monte Carlo dropout methods can accurately

estimate uncertainty in predictions made by convolutional neural networks that make rare but

potentially important misclassifications on medical imaging data, and corroborates prior evi-

dence that Monte Carlo dropout can also offer predictive performance advantages, especially

on external validation, by mitigating risk for overfitting.

Conformal prediction–used in two studies–demonstrated strong performance in estimating

uncertainty. Wieslander et al [19] applied convolutional neural networks to investigate drug

distribution on microscopy images of rat lungs following different doses and routes of medica-

tion administration, finding that conformal prediction explained 99% of the variance in pre-

dicted versus actual error. In another study by Athanasiadis et al [20], conformal prediction

improved audio-visual emotion classification for a semi-supervised generative adversarial net-

work compared with a similar network using the classifier alone.

Two studies used uncertainty estimation to compare modeling methods. Graham et al [21]

used uncertainty measurements to demonstrate that a hierarchical approach to labeling

regions and sub-regions of the brain produced similar predictive performance with greater

certainty compared with a flat labeling approach, at any level of the labeling tree. Alternatively,

to evaluate similarity between functional brain networks, Ktena et al [22] use convolutional

neural network architectures in deriving a novel similarity metric on irregular graphs, demon-

strating improver overall classification. Sedghi et al [23] calculated variance in displacement

for different image classifications of brain MRIs, demonstrating good dice values for intra-sub-

ject pairs with consistent good results when simulating resections on the images, suggesting

utility for challenging clinical scenarios.

Non-imaging applications

The six studies describing non-imaging medical applications were heterogenous. Five of the

studies endeavored to predict and classify biochemical and molecular properties for pharma-

cologic applications, each with somewhat different model architectures (i.e., ensembles of deep

neural networks, convolutional neural networks, and multi-layer perceptrons). Three of these

five studies generated posterior distributions and assessed variance across those distributions

to approximate prediction uncertainty. In one instance, there was almost no gain in predictive

performance; in another by Cortes-Ciriano and Bender, there was strong correlation between

estimated confidence levels and the percentage of confidence intervals that encompassed the

ground truth (R2 > 0.99, p<0.001) [24]. This difference in performance may have been attrib-

utable to differences in model features. The less successful model used bit strings to represent

molecular structures; the more successful model used high-granularity bioactivity features,

with 203–5,207 data points per protein. A third study in the molecular property class also used

Monte Carlo dropout techniques and reported relatively low test error values [25]. Two studies

used conformal predictions to estimate uncertainty, one of which used conformal predictions

in predicting active and inactive compound classes, generating single-label predictions for

about 90% of all instances with overall confidence 80% or greater. Best results were demon-

strated for deep neural networks rather than random forest or light gradient boosting machine

models, and conformal prediction offered a controllable error rate and better recall for all

three model types [26]. Cortes-Ciriano and Bender [27] leveraged conformal predictions in

analyzing errors on ensembles of predictions generated by dropout, reporting strong correla-

tion between confidence levels and error rates (R2 > 0.99, p<0.001), with results similar to
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those reported in their Deep Confidence work [24]. The remaining non-imaging study pre-

dicted neurodegenerative disease progression using multi-source clinical, imaging, genetic,

and biochemical data, reporting variable predictive performance across different outcomes,

but overall strong performance [28]. Compared with the biochemical prediction models, this

study used a unique method for quantifying uncertainty, by measuring variance across predic-

tions made by an ensemble of possible patient forecasts using a generative network. Collec-

tively, these findings suggest that unique model architectures and methods for estimating

uncertainty can be applied to a variety of non-pixel-based input features, producing occasional

predictive performance advantages and accurate uncertainty estimations.

Discussion

This review found that the uncertainty inherent in deep learning predictions are most com-

monly estimated for medical imaging applications using Monte Carlo dropout methods on

convolutional neural networks. In addition, unique model architectures and uncertainty esti-

mation methods can apply to non-pixel features, simultaneously improving predictive perfor-

mance (presumably by mitigating risk for overfitting, in the case of Monte Carlo Dropout)

while accurately estimating uncertainty. Unsurprisingly, for medical imaging applications,

larger datasets of training images were associated with greater predictive performance

[15,21,29–38]. We could not perform meta-analyses on predictive performance or uncertainty

estimations because performance metrics and methods for quantifying uncertainty were heter-

ogenous, despite relative homogeneity in model architectures–which were primarily based on

convolutional neural networks–and homogeneity in methods for estimating uncertainty–

which were primarily based on Monte Carlo dropout [14]. Uncertainty estimations for non-

medical imaging applications were both sparse and heterogenous. Yet the weight of evidence

suggests that a variety of methods can estimate uncertainty in predictions on non-pixel fea-

tures, offering greater performance and reasonably accurate uncertainty estimations. Confor-

mal prediction demonstrated efficacy in uncertainty estimation as well and is easy to interpret

(e.g., at a confidence level of 80%, at least 80% of the predicted confidence intervals contain the

true value), and applies not only to deep learning but also to other machine learning

approaches such as random forest modeling.

For both imaging and non-imaging applications, uncertainty estimations are poised to aug-

ment clinical application by identifying rare but potentially important misclassifications made

by deep learning models. First, mistrust of machine learning predictions must be overcome.

Model explainability, interpretability, and consistency with logic, scientific evidence, and

domain knowledge are critically important in building trust [7,8]. Yet, even when a model is

easy to understand, generates predictions consistent with medical knowledge, and has 90%

overall accuracy, patients and providers may wonder: is this prediction among the 1 in 10 that

is incorrect? Can the model tell me whether it is certain or uncertain of this particular predic-

tion? To address these questions and build trust, it seems prudent to include model uncer-

tainty estimations in shared decision-making processes. Therefore, we believe that uncertainty

estimations are a critical element in the safe, effective clinical implementation of deep learning

in healthcare. In performing this review, we sought to summarize evidence regarding the effi-

cacy of uncertainty estimation in building trust in deep learning among patients, caregivers,

and clinicians, but we found little evidence thereof. Therefore, we propose uncertainty-aware

deep learning as a novel approach to building trust.

We found no previous systematic or scoping reviews on the same topic, though several

authors have described important components of estimating uncertainty in deep learning pre-

dictions. Common statistical measures of spread (e.g., standard deviation and interquartile
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range) are undefined for single point predictions. Entropy, however, does apply to probability

distributions. Therefore, most uncertainty estimation methods generate probability distribu-

tions around point estimations. Monte Carlo dropout, as originally described by Gal and

Ghahramani, offers an elegant solution [14]. During testing, multiple stochastic predictions

are generated from a given network for which different neurons have dropped out with speci-

fied probability. This dropout rate is calibrated during model development according to train-

ing data sparsity and model complexity. When training, dropping out different sets of neurons

at different steps harbors the additional advantage of mitigating overfitting. When testing,

each forward pass uses a different set of neurons; therefore, the outcome is an ensemble of dif-

ferent network architectures that can be represented as a posterior distribution. Variance

across the distribution of predictions can be analyzed by several methods (e.g., entropy, varia-

tion ratios, standard deviation, mutual information). High variance suggests high uncertainty;

low variance suggests low uncertainty.

This review was limited by heterogeneity in model performance metrics and methods for

quantifying uncertainty. To identify the optimal methods for estimating uncertainty in deep

learning predictions, it would be necessary to perform a meta-analysis or comparative effec-

tiveness analyses. This would be facilitated by achieving consensus regarding core performance

and uncertainty metrics. The field of deep learning uncertainty estimation is maturing rapidly;

it would be advantageous to establish reporting guidelines, as has been done for prediction

modeling, causal inference, and machine learning trials [39–42]. Finally, beyond uncertainty

estimations, it may be useful to quantify how similar an individual patient is to other patients

in the training data, so that users can understand whether uncertainty is attributable to vari-

ability in outcomes relative to similar features in the training data or due to a patient having

outlier features that are not well represented in the training data.

Conclusions

For convolutional neural network predictions on medical images, Monte Carlo dropout meth-

ods accurately estimate uncertainty. For non-medical imaging applications, a paucity of evi-

dence suggests that several uncertainty estimation methods can improve predictive

performance and accurately estimate uncertainty. Using uncertainty estimations to gain the

trust of patients and clinicians is a novel concept that warrants empirical investigation. The

rapid maturation of deep learning uncertainty estimations in medical literature could be facili-

tated by achieving consensus regarding performance and uncertainty metrics and standardiz-

ing reporting guidelines. Once standardized and validated, uncertainty estimates have the

potential to identify rare but important misclassifications made by deep learning models in

clinical settings, augmenting shared decision-making processes toward improved healthcare

delivery.
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